Chapter 8 Model Building
The goal of a model is to provide a simple low-dimensional summary of a dataset. We’re going to use models to partition data into patterns and residuals. Strong patterns will hide subtler trends, so we’ll use models to help peel back layers of structure as we explore a dataset.
However, before we can start using models on interesting, real, datasets, you need to understand the basics of how models work. For that reason, we start using only simulated datasets. These datasets are very simple, and not at all interesting, but they will help you understand the essence of modelling before you apply the same techniques to real data.
There are two elements we have to define for a model:
First, you define a family of models that express a precise, but generic, pattern that you want to capture. For example, the pattern might be a straight line, or a quadratic curve. You will express the model family as an equation like
y = a_1 * x + a_2
ory = a_1 * x ^ a_2
. Here,x
andy
are known variables from your data, anda_1
anda_2
are parameters that can vary to capture different patterns.Next, you generate a fitted model by finding the model from the family that is the closest to your data. This takes the generic model family and makes it specific, like
y = 3 * x + 7
ory = 9 * x ^ 2
.
It’s important to understand that a fitted model is just the closest model from a family of models. That implies that you have the “best” model (according to some criteria); it doesn’t imply that you have a good model and it certainly doesn’t imply that the model is “true.” George Box puts this well in his famous aphorism:
All models are wrong, but some are useful.
The goal of a model is not to uncover truth, but to discover a simple approximation that is still useful.